Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.
نویسندگان
چکیده
A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation.
منابع مشابه
Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.
We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light patterns that drive the optoelectronic DEP on...
متن کاملRapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap.
Biomimetic heterogeneous patterning of hepatic and endothelial cells, which start from randomly distributed cells inside the microfluidic chamber, via the chip design of enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported in this paper. The concentric-stellate-tip electrode array design in this chip generates radial-pattern electric fields for the DEP manipulation o...
متن کاملOptical Spectrum and Electric Field Waveform Dependent Optically-Induced Dielectrophoretic (ODEP) Micro-Manipulation
In the last seven years, optoelectronic tweezers using optically-induced dielectrophoretic (ODEP) force have been explored experimentally with much success in manipulating micro/nano objects. However, not much has been done in terms of in-depth understanding of the ODEP-based manipulation process or optimizing the input physical parameters to maximize ODEP force. We present our work on analyzin...
متن کاملThree-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure.
Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis...
متن کاملFabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP) Force
We report in this paper a novel, inexpensive and flexible method for fabricating micrometerand nanometer-scale three-dimensional (3D) polymer structures using visible light sources instead of ultra-violet (UV) light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks) for patterning and fabricating polymer struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 13 19 شماره
صفحات -
تاریخ انتشار 2013